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ABSTRACT

This paper presents a comprehensive study on the evolution of the small-strain shear modulus (G) of granular
materials during hydrostatic compression, conventional triaxial, reduced triaxial, and p-constant triaxial tests
using 3D discrete element method. Results from the hydrostatic compression tests indicate that G can be precisely
estimated using Hardin’s equation and that a linear correlation exists between a stress-normalized G and a
function of mechanical coordination number and void ratio. During the triaxial tests, the specimen fabric, which
refers to the contact network within the particle assembly, remains almost unchanged within a threshold range of
stress ratio (SR). The disparity between measured G and predicted G, as per empirical equations, is less than 10%
within this range. However, once this threshold range is exceeded, G experiences a significant SR effect, pri-
marily due to considerable adjustments in the specimen’s fabric. The study concludes that fabric information
becomes crucial for accurate G prediction when SR threshold is exceeded. A stiffness-stress-fabric relationship
spanning a wide range of SR is put forward by incorporating the influences of redistribution of contact forces,

effective connectivity of fabric, and fabric anisotropy into the empirical equation.

1. Introduction

The term “small-strain shear modulus” refers to the shear modulus at
extremely small strain levels, typically below 107°. It is a basic soil
property with clear physical meaning and has a wide range of applica-
tions in geotechnical engineering (Yang, 2024), including earthquake
ground response analyses, underground construction, and liquefaction
potential assessment (Burland and Kalra, 1986; Andrus and Stokoe,
2000; Clayton and Heymann, 2001; Zhou and Chen, 2007; Yang and
Yan, 2009). The pioneering research on the small-strain shear modulus,
G, of soil was carried out by Hardin and Richart (1963). They performed
resonant column tests on granular soils and discovered that G in an
isotropic stress state relies primarily on the void ratio, e, and effective
confining stress, . Subsequent studies confirmed their observation and
led to a general form for G (Kuribayashi et al., 1975; Iwasaki and Tat-
suoka, 1977; Kokusho, 1980; Saxena and Reddy, 1989):

G = AF(e) (0, /pa)"” )

where A denotes a constant depending on the type of soil; F(e) is a

function of void ratio and can be expressed as F(e) = (B — e)?/(1 +e)
and B is typically taken as 2.17 for round particles; p, marks a reference
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stress; a designates the stress exponent.

Although isotropic stress conditions are commonly employed in
laboratory element tests, soils in natural environments often experience
anisotropic stress conditions, such as those found in slopes or under
foundations. Unlike the case with isotropic stress conditions, a clear
consensus regarding the relationship between G and anisotropic stress
states remains elusive. Hardin and Black (1966) were the first to note
that Eq. (1) is applicable to anisotropic stress states when replacing o
with the mean effective stress, p":

G = AF(e)(p'/pa)" @)

The validity of Eq. (2) has been upheld by experimental evidence under
triaxial stress conditions (Kuribayashi et al., 1975; Schmertmann, 1978;
Tatsuoka et al., 1979). However, some researchers reported that G is
solely determined by the mean effective stress in the wave polarization
plane, relatively independent of the principal effective stress in the out-
of-plane direction (Knox et al., 1982; Yu and Richart, 1984; Santamarina
and Cascante, 1996). Hence, it can be expressed as (Chen and Yang,
2024):
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where ¢; and o; are the principal effective stresses in the i and j direction,
i.e., the wave propagation and oscillation directions, respectively. The
third perspective posits that it is not the mean principal stress, but the
respective component of the principal effective stress in the polarization
plane, which has the major influence on G (Roesler, 1979; Yu and
Richart, 1984; Hardin and Blandford, 1989; Santamarina and Cascante,
1996; Rampello et al., 1997; Dutta et al., 2021). Mathematically it can
be described as follows (Yang, 2024):

Gy = AF(e)p, " ®o{"c]" (@]
where a, and «; are stress exponents of ¢; and oj, respectively. Never-
theless, However, it remains an open question whether ¢; and o;
contribute equally to the associate Gy, i.e., @ = ap. Some researchers
deemed that a, # @, (Roesler, 1979; Yu and Richart, 1984; Santamarina
and Cascante, 1996), while others suggested that a, = @, and Eq. (4) can
be simplified as (Hardin and Blandford, 1989; Rampello et al., 1997;
Dutta et al., 2021):

Gy = AF(e) (1/olc} /pa) ®)

In addition, Bellotti et al. (1996) modified Eq. (4) to account for the
influence of effective principal stress in the third direction:

Gy = AF(e)p, "~ "o{"c}" o} (6)
where oy is the third (i.e., out-of-plane) principal effective stress, and a,
denotes the stress exponent of oy. This Equation was also adopted by
Kuwano and Jardine (2002) in a different form. However, it is crucial to
point out that a. is remarkably smaller a, and ay.

Despite the difference in empirical equations, the influence of stress
ratio (SR) on G has been widely observed. For instance, Kuribayashi
et al. (1975) found their test results could not be explained by Eq. (2)
when SR was greater than 2.5 under triaxial compression conditions.
Similarly, Tatsuoka et al. (1979) reported that the effect of SR on G
became significant when SR > 4 in triaxial compression cases. Yu and
Richart (1984) observed that when SR was larger than 2.4-3.0, the effect
of SR on G was greater than 10 %. Kuwano and Jardine (2002) discov-
ered that G was distinctly lower than expected when SR was above 2.2.
To account for the effect of SR, various correction factors have been
proposed and integrated into empirical equations, e.g., factor K, pro-
posed by Yu and Richart (1984), factor (y+1) given by Payan et al.
(2016), and factor R suggested by Chen and Yang (2024).

It is widely recognized that the macroscopic properties of granular
materials are closely related to the underlying microscopic fabric (Chang
et al., 1995; Thornton, 2000; Magnanimo et al., 2008; Yimsiri and Soga,
2010; Yang and Dai, 2011; Gu and Yang, 2013; Guo and Zhao, 2013;
Otsubo et al., 2020; Zhang and Yang, 2023). Fabric typically refers to the
contact network when it comes to the stiffness of granular materials. In
the empirical equations previously mentioned, factor A represents G/
F(e) measured in a reference isotropic stress state of p,, and the stress
component exponents (e.g., @) stem from the sensitivity of G to stress
states. Given that G is a constant-fabric measurement in a specific stress
state, and that A and stress exponents are determined by fitting the
power function to G in different anisotropic stress states, the influence of
both inherent soil fabric and changes in soil fabric during loading are
intrinsically factored in (Cha et al., 2014). As previous studies included
different testing materials, shape of specimens, and stress paths, the
resulting variances in soil fabric may have led to differing results, thus
contributing to the variety of empirical equations. Moreover, under
substantial deviatoric stress, granular materials may undergo significant
adjustments in microscopic structure (Oda, 1972; Hasan and Alshibli,
2012; Schmidt et al., 2022), which could account for the observed
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effects of SR in experimental studies (Kuwano and Jardine, 2002).
Therefore, fabric information is crucial for accurately determining and
comprehending the G of granular materials in anisotropic stress states.

Several advanced scanning techniques such as scanning electron
microscopy and X-ray Computed Tomography, along with testing
methods like the photo-elastic experiment, have been employed to
measure the fabric of granular materials (Majmudar and Behringer,
2005; Mitaritonna et al., 2014; Wiebicke et al., 2020). Nonetheless, the
practical application of these technologies can be complex, time-
consuming, labor-intensive, and expensive. Meanwhile, the discrete
element method (DEM), pioneered by Cundall and Strack (1979), pro-
vides a convenient approach to conduct a comprehensive quantitative
assessment of fabric throughout the testing procedure. This method has
become increasingly popular in the study of small-strain stiffness. For
example, Wang and Mok (2008) conducted both experimental and DEM
studies on the anisotropy of G. demonstrating that G exhibits relative
independence from the out-of-plane stress. Gu et al. (2013) performed
triaxial tests using 2D DEM and discovered that the fabric of granular
materials remains nearly constant within a specific SR range. However,
if SR surpasses this range, the fabric adjusts significantly to resist
anisotropic stresses. O’Donovan et al. (2015) executed the DEM simu-
lation with a face-centered cubic assembly, claiming that the principal
effective stress out-of-plane has a finite impact on G. Nguyen et al.

(2018) confirmed the relationship between G; and 6;6} through DEM

simulation of true triaxial tests. Gu et al. (2023) measured the shear
wave velocities in conventional triaxial and true triaxial tests by DEM,
showing the dependency of stress normalized shear wave velocities (or
G) on the contact normal densities in the wave propagation and particle
oscillation directions. Gong et al. (2024) explored the effects of particle
shape, physical properties and particle size distribution on G in isotropic
stress states through DEM. They found that G uniquely depends on the
mechanical coordination number and contact stiffness, suggesting an
empirical expression to depict their relationship.

With the help of DEM, significant progress has been made in un-
derstanding the relationship between the small-strain shear modulus,
stress states, and fabric. For example, G tends to be proportional to

/005, and is affected by the distribution of contact force, contact

normal, and coordination number (Gu et al., 2017; Nguyen et al., 2018;
Gong et al., 2019; Otsubo et al., 2020; Liu et al., 2023). However, pre-
vious studies have typically encompassed a limited array of stress
combinations or stress paths, and the inconsistencies identified in these
studies have not been thoroughly resolved. These constraints have
muddled the clarity of their data and affected the generality of their
conclusions. Moreover, the accuracy of these empirical equations may
be compromised due to adjustments in fabric (Gu et al., 2023). Conse-
quently, it is imperative to further investigate the relationship between
the small-strain shear modulus, stress states, and fabric.

To gain a comprehensive perception of the small-strain shear
modulus of granular materials under various stress conditions and to
explore the quantitative stiffness-stress-fabric relationship, we carried
out systematic DEM simulations on the randomly packed samples. These
simulations encompassed a variety of tests, including hydrostatic
compression (HC), conventional triaxial (CT), reduced triaxial (RT), and
p-constant triaxial (PT) tests. Concurrently, G of the specimen and cor-
responding microstructure were monitored. The new contributions of
this study are: (a) an attempt to reconcile the divergent views in the
literature concerning the impact of anisotropic stress states on the small-
strain shear modulus, and to introduce a factor, R, to account for the SR
effect arising from the redistribution of contact forces; (b) a proposal of a
quantitative relationship linking the small-strain shear modulus with
anisotropic stress states and the fabric of granular materials across an
extensive range of SR.



M. Jiang and J. Yang

2. Simulation Method
2.1. Specimen Generation

In a DEM simulation, the selection of contact model is significant. We
adopted a simplified Hertz-Mindlin contact model, as depicted in Fig. 1,
to capture the stress-dependent stiffness (Jiang and Yang, 2024). The
contact force, F, which comprises the hertz force and dashpot force, can
be decomposed into the normal and tangential components. The normal
hertz force, F!, can be formulated as follows:

Fh = gknt5n @)
3

where k, is the tangent elastic stiffness in the normal direction; &, de-

notes normal contact overlap. The tangential hertz force, F!, is

restrained by the law of Coulomb friction, which can be expressed as:

(" — ks, (FY)' < up

M) =
(F?) uFh, else

®

where (F{‘)T and (F{I)P1 are the tangential hertz force at current time
step, T, and former time step, T — 1, respectively; k; represent the
tangent elastic stiffness in the tangential directions; Aé; indicates the
relative tangential displacement increment; u signifies the friction co-
efficient. The normal dashpot force, FS, and tangential dashpot force, Ffi,
are updated by:

Fl = —cnéy

R eh ©)

where ¢, and c; represent the normal and tangential viscous damping
coefficients, respectively; 5, and &; denote the relative translational
velocity in the normal and tangential directions, respectively.

We carried out the DEM simulations utilizing PFC3P (Itasca Consul-
ting Group, 2015). Cubic specimens, comprising 12,991 spherical par-
ticles, were used, which adhered to the particle size distribution of
Ottawa 50-70 sand, as illustrated in Fig. 1. The specimen’s coefficient of
uniformity, C,, measured 1.23, and the mean particle diameter, dso, is
0.26 mm. The radius expansion method was utilized to generate the
specimen. To begin, spherical particles were randomly generated within
a cubic space measuring 6 mm on each side, bounded by three pairs of
frictionless walls. These particles were initially set to half their intended
size, then underwent gradual enlargement to attain their final sizes.
Following this, the newly formed assembly was subjected to isotropic
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compression until it achieved a stress condition of 10 kPa. Notably, the
local damping coefficient was set to 0.7 to expedite the attainment of
equilibrium, and different inter-particle friction coefficients were used
during this process to generate the specimen with different e. Subse-
quently, the inter-particle friction coefficient was adjusted to 0.5, the
local damping was removed, and the normal critical damping ratio was
set at 0.1. The specimen was then further isotropically compressed to
achieve an initial stress level of 100 kPa. Interim inter-particle friction
coefficients of 0 and 0.2 were used to generate a dense specimen with an
initial e-value of 0.6192 and a loose specimen with an initial e-value of
0.7384. These e values correspond to relative densities of 100 % and
20.1 %, respectively. The specimen with the maximum initial e-value of
0.7684 was prepared using an interim inter-particle friction coefficient
of 0.5. The final dimensions are 5.83 mm and 5.69 mm on each side for
the loose and dense specimens, respectively. The study of Wiacek and
Molenda (2016) suggests that a granular packing dimension of at least
15 times the mean particle diameter is sufficient to minimize wall effects
and ensure representative average values. Since the specimen di-
mensions in this study exceed 20dsy, the influence of size effects can be
considered negligible.

In our DEM simulations, the material property parameters were set
to match the typical values of natural quartz grains, which has been
widely adopted in prior studies (Ng and Petrakis, 1996; Gu et al., 2017;
Liu et al., 2023; Gong et al., 2024; Jiang and Yang, 2024). The detailed
parameters used in the specimen are summarized in Table 1. Conse-
quently, at the initial stress level of 100 kPa, G is approximately 180
MPa for the dense specimen and 100 MPa for the loose specimen. These
values of G were measured using the probe test, the methodology of
which is introduced in detail in the following section.

2.2. Stress path and probe test

The specimen was initially isotropically compressed from 100 to

Table 1
Parameters used in the simulation.
Particle shape Spherical No. of particles 12,991
Contact law Hertz- Particle density 2660 kg/
Mindlin m?
Wall shear modulus 29 GPa Particle shear modulus 29 GPa
Wall Poisson’s ratio 0.15 Particle Poisson’s ratio 0.15
Wall-particle friction 0 Inter-particle friction 0.5
coefficient coefficient
Normal critical damping 0.1 Tangential critical 0
ratio damping ratio
Local damping 0 Gravity 0 my/s?
coefficient

100 7 ~
§ | Ottawa 50-70 sand
s “WWW— :
%D 60 Spring
2 1 —IF Dashpot
£ 1 i 3
= I \{ ——— Slider
g 7 .'
= |
~
20 —
. Specimen
0 T T T L I\l T T T L I\I T T L K /
10° 10" 10° 10"

Particle Size (mm)

Contact Law

Fig. 1. Particle size distribution and contact law in DEM specimen (Experiment result from Chen and Yang (2024)).
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1000 kPa to create a reference dataset. Then, from isotropic stress states
of 100, 200, 500, and 1000 kPa, consolidation was implemented along
different stress paths to achieve the target anisotropic stress states. These
stress paths include CT, RT, and PT tests, as shown in Fig. 2. In the CT
stress path, the stresses in the horizontal directions, o} (i.e., 6\ ,and a;,),
were maintained constant while the stress in the vertical directions, ¢
(i.e., 0), was gradually increased for conventional triaxial compression
(CTQ); o, remained constant while 6}, was progressively increased for
conventional triaxial extension (CTE). In the RT stress path, ¢/, was kept
constant while ¢, was monotonically decreased for reduced triaxial
compression (RTC); o}, was held constant while ¢, was successively
decreased for reduced triaxial extension (RTE). Furthermore, in the PT
stress path, p’ stayed constant while o decreased and ¢, increased
simultaneously for p-constant triaxial compression (PTC); p’ guaranteed
constant while ¢} increased and ¢, decreased coterminously for p-con-
stant triaxial extension (PTE). Particularly, SR is defined as ¢,/ a’h in this
study.

The test programs are summarized in Table 2. Here, the test ID is
named according to the loading path, the density of specimen, and stress
level. For instance, “HC-L” signifies a HC stress path applied to the loose
specimen; “CTC-D1” represents a CTC stress path initiated from the
lowest stress level (i.e., 100 kPa) for the dense specimen. The mean
effective stress, p’, and deviatoric stress, g, are defined as

P = (6 +0,+0,)/3,

q= \/|:(0‘;6;,)2 + (o'/y 76;)2 + (), 7(7;()2:|/2

The dimensionless parameter—inertia number, I, has been exten-
sively utilized to identify the flow regime of granular materials (da Cruz
et al., 2005; Peyneau and Roux, 2008; Perez et al., 2016). It denotes as
I = |é|dso+/p,/P's where ¢ is the strain rate and p; refers to the particle
density. The response of the granular assembly is generally considered
quasi-static, with negligible inertial effects, when I falls below 103 (van
der Elst et al., 2012). During the tests, the target stress state was ach-
ieved by moving the boundary walls with a servo system. To ensure a
quasi-static response, the maximum velocity of the walls was limited to
0.05 mm/s, thus keeping the inertia number far smaller than 1073,

The probe test was performed at specific intervals, with the probing

(10)

oy (07)
A

CTC
HC

PTC

RTC< > CTE

v PTE
RTE oy, (oy and o0y)

Fig. 2. Stress path of HC, CT, RT, and PT tests.
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frequency documented in Table 2. Noting that under anisotropic stress
states, the simple-shear-type probe test is a more appropriate and reli-
able method for measuring small-strain shear modulus compared with
the triaxial-type probe test, the Gy; in the ki plane is determined using the
equation below:

Gri = Aty /Ayy an

where Ary; and Ay,; are the stress increment and strain increment in the
ki plane, respectively. The probe test continues until the shear strain
increment reaches 10°. During the probe tests, the shear strain rate is
maintained at 10~3/s, ensuring that the inertia number remains smaller
than 1075, In addition, as suggested by Cundall et al. (1989), the inter-
particle friction coefficient was assigned an infinite value during the
probe test. This strategy was employed to inhibit sliding between par-
ticles and thereby rule out plastic deformation of the specimen.

3. Results and Analysis
3.1. HC tests

The evolution of G during HC tests is depicted in Fig. 3. As shown in
Fig. 3(a), G in different directions exhibit near-identical values, sug-
gesting isotropy within the specimen. Moreover, as expected, G in-
creases with the increasing confining pressure. Fig. 3(b) demonstrates
that G/F(e) has a strong power relationship with of/p,, where
F(e) = (1.22 — e)?/(1 + €) and p, = 1 kPa. This relationship aligns with
Hardin’s equation, as formulated in Eq. (1), with the constant B = 1.22
to give a unified relationship for both loose and dense specimens.

The increase of shear modulus is concurrent with the adjustment of
specimen fabric. As shown in Fig. 4(a), e declines while the mechanical
coordination number, Z;,, ascends with the increasing confining pres-
sure. Z, represents the coordination number considering only me-
chanically stable particles, and is defined as (Thornton, 2000):

7 2N, — N; a2
m = X1 a1l A0

N, - N, - N,
where N, is the number of contact point; N, denotes the number of
particles; Nll) and Ng designate the number of particles maintaining a
single contact and devoid of any contact with other entities, respec-
tively. Previous studies have demonstrated that G is closely linked to Zp,
under hydrostatic conditions. For instance, linear relationships have

been established between G/661/3 and (Zy/e)*® (Nie et al., 2022). This
linear relationships were also observed in this study as shown in Fig. 4
(b), underscoring the close interplay between the small-strain shear
modulus, stress states, and fabric of granular materials.

3.2. Triaxial tests

CT, RT, and PT tests were initiated from isotropic stress states of 100,
200, 500, and 1000 kPa. Given similar results across various initial stress
levels, we present only one portion here for brevity. As shown in Fig. 5
(a—c), G can vary significantly in different planes due to the anisotropic
stress states. Especially, the degree of anisotropy in G escalates with
increasing stress anisotropy. In different stress paths, Gy; and G,y can be
considered identical, suggesting the transversely isotropic symmetry of
the specimen. Gu et al. (2013, 2017) reported that there are threshold
values of SR, termed as SRy, along the RTE/CTC. Within the ranges
demarcated by two SRy, the coordination number, Z, or mechanical
coordination number, Z,, exhibits minimal variation; however, when
SR surpasses this range, a significant reduction in Z or Z,, was observed.
This trend is also visible in all triaxial stress paths in our study, as shown
in Fig. 5(d-f). Especially for the dense specimen, Z, remains nearly
constant as the SR resides the range between two threshold values. The
change in G is contingent on the variation of stress level. Nevertheless,



Table 2

Summary of test programs.

Test ID Initial state Final state Test ID Initial state Final state Probing frequency
p'(kPa) q (kPa) e SR p'(kPa) q (kPa) e SR p'(kPa) q (kPa) e SR p'(kPa) q (kPa) e SR
HC-D 100.0 0 0.6192 1.0 1000.0 0 0.6143 1.00 HC-L 100.0 0 0.7384 1.0 1000.0 0 0.7319 1.0 per 100 kPa*
CTC-D1 100.0 0 0.6192 1.0 146.7 140.0 0.6188 2.40 CTC-L1 100.0 0 0.7384 1.0 120.0 60.0 0.7381 1.60 per 10 kPa
CTE-D1 193.3 140.0 0.6184 0.42 CTE-L1 140.0 60.0 0.7379 0.63 per 10 kPa
RTC-D1 63.3 55.0 0.6195 2.22 RTC-L1 76.7 35.0 0.7387 1.54 per 5 kPa
RTE-D1 80.0 60.0 0.6194 0.40 RTE-L1 86.7 40.0 0.7386 0.60 per 5 kPa
PTC-D1 100.0 95.5 0.6192 2.40 PTC-L1 100.0 50.0 0.7384 1.60 per 0.1 SR
PTE-D1 100.0 75.0 0.6192 0.40 PTE-L1 100.0 46.2 0.7384 0.60 per 0.1 SR
CTC-D2 200.0 0 0.6184 1.0 293.3 280.0 0.6178 2.40 CTC-L2 200.0 0 0.7374 1.0 240.0 120.0 0.7369 1.60 per 20 kPa
CTE-D2 386.7 280.0 0.6172 0.42 CTE-L2 280.0 120.0 0.7366 0.63 per 20 kPa
RTC-D2 126.7 110.0 0.6189 2.22 RTC-L2 153.3 70.0 0.7378 1.54 per 10 kPa
RTE-D2 160.0 120.0 0.6187 0.40 RTE-L2 173.3 80.0 0.7375 0.60 per 10 kPa
PTC-D2 200.0 190.9 0.6184 2.40 PTC-L2 200.0 100.0 0.7373 1.60 per 0.1 SR
PTE-D2 200.0 150.0 0.6184 0.40 PTE-L2 200.0 92.3 0.7373 0.60 per 0.1 SR
CTC-D3 500.0 0 0.6166 1.0 733.3 700.0 0.6155 2.40 CTC-L3 500.0 0 0.7349 1.0 600.0 300.0 0.7341 1.60 per 50 kPa
CTE-D3 966.7 700.0 0.6145 0.42 CTE-L3 700.0 300.0 0.7335 0.63 per 50 kPa
RTC-D3 316.7 275.0 0.6176 2.22 RTC-L3 383.3 175.0 0.7357 1.54 per 25 kPa
RTE-D3 400.0 300.0 0.6172 0.40 RTE-L3 433.3 200.0 0.7353 0.60 per 25 kPa
PTC-D3 500.0 477.3 0.6166 2.40 PTC-L3 500.0 250.0 0.7348 1.60 per 0.1 SR
PTE-D3 500.0 375.0 0.6166 0.40 PTE-L3 500.0 230.8 0.7348 0.60 per 0.1 SR
CTC-D4 1000.0 0 0.6143 1.0 1466.7 1400.0 0.6126 2.40 CTC-L4 1000.0 0 0.7319 1.0 1200.0 600.0 0.7307 1.60 per 100 kPa
CTE-D4 1933.3 1400.0 0.6110 0.42 CTE-L4 1400.0 600.0 0.7297 0.63 per 100 kPa
RTC-D4 633.3 550.0 0.6159 2.22 RTC-L4 766.7 350.0 0.7331 1.54 per 50 kPa
RTE-D4 800.0 600.0 0.6152 0.40 RTE-L4 866.7 400.0 0.7325 0.60 per 50 kPa
PTC-D4 1000.0 954.5 0.6144 2.40 PTC-L4 1000.0 500.0 0.7318 1.60 per 0.1 SR
PTE-D4 1000.0 750.0 0.6144 0.40 PTE-L4 1000.0 461.5 0.7317 0.60 per 0.1 SR

*Every 20 kPa when effective stress is from 100 kPa to 200 kPa.
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irrespective of the plane they are in, a marked decline in G is correlated
with a decrease in Z;,, when SR surpasses its threshold values.

Moreover, consistent with Zy,, fabric anisotropy also remains almost
constant within the range demarcated by two SRy, as corroborated by
the contact normal probability density and the anisotropy factor, a,
shown in Fig. 6. The contact normal probability density, f(6, ¢), was
calculated according to the following formula:

P(0: <0< 0ur,0 < 0 < j1)
f{ZJ’IJ+1 f;j“l 6d9d(p

f(0,9) = 13)

where P denotes the probability of a contact normal pointing to a spe-
cific directional range; 6 and ¢ are the polar angle and azimuth angle
respectively, in the context of spherical coordinates; the subscripts i, i +
1,j, andj + 1 represent the lower limit and upper limit of the directional
range, respectively.

The fabric tensor, @, is commonly used to evaluate the anisotropic of
fabric, defined as (Satake, 1978; Oda, 1982; Barreto et al., 2009; Zhang
et al., 2023):

1 &
C1.C
N nin; a4

€ =1

(D,'j:

where n; and n; are the component of a unit contact normal in the i and j
directions, respectively. Furthermore, the degree of anisotropy is typi-
cally quantified using a;,, defined as:

3

a = EDUDﬁ (1 5)

where the deviatoric tensor D; denotes as D = 223 (@ — 15y), and & is

Kronecker delta. Within the two threshold values of SR, the contact
normal probability density in each direction remains almost unchanged,
and a, values are nearly 0. However, the magnitude of contact normal
forces, as also illustrated in Fig. 6, fluctuates with alterations in the
principal effective stress, irrespective of the degree of fabric anisotropy.
The mean contact normal force refers to the average magnitude of
contact normal forces within a designated directional region. Generally,
there is a direct correlation between the magnitude of contact normal
forces and the principal effective stress in the same direction—as one
increases, so does the other, and vice versa.

The results discussed above suggest that the specimen may adjust the
distribution of contact forces and its fabric to accommodate changes in
stress during triaxial tests. The change in G primarily stems from the
redistribution of contact forces when SR lies within its threshold range.
While, once SR exceeds this range, both the adjustment of contact force
and fabric contribute to the variation of G. The evolution of deviatoric
strain, &, and volumetric strain &, also keeps consistent with the
adjustment of microscopic structure, as depicted in Fig. 7. Here,

ey = exteyt+e;, and g = \/g[(ex—ey)z-&-(ex—ez)z—i-(ey—ez)z].

Generally, when SR is within its threshold range, ¢, tends to increase
linearly, mirroring the changes in SR. However, once SR surpasses its
threshold range, the rate at which ¢, increases accelerates significantly.
The evolution of &, relies on the change in p'. Specifically, an increase in
p' typically leads to the contraction of specimen volume (i.e., & in-
creases). Conversely, a decrease in p’ would cause the swell in specimen
volume (i.e., &, decreases). For the PT tests, since p’' remains constant, &,
also stays unchanged accordingly. It is worth noting that as SR in-
creases/decreases beyond its threshold range, the dense specimen tends
to dilate, whereas the loose specimen exhibits a tendency to contract.
However, due to the limited values of SR were considered in this study,
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these phenomena are not explicitly observed across all stress paths.

3.3. Comparison of empirical equations

Several empirical equations, notably Egs. (2), (3), and (5) exist to
illustrate the correlation between G and anisotropic stress states. In

these equations, the stress level, [¢], is taken asp, (¢} + 0}) /2, and a;a}f,

respectively. We aim to evaluate the efficacy of these empirical equa-
tions across different stress paths. To begin, the factor, A, was intro-
duced, as a means to assess the extent of deviation of G/F(e) from its
initial state at the onset of the triaxial tests:

Ay = M (16)
[Gij/F(e)} init

where [G;j/F(e)], . is the initial Gj/F(e). As shown in Fig. 8, Ay
measured in this study are compared with those predicted by different
Equations. In spite of the stress path, the measured value starts to
significantly deviate from the predicted values when SR exceeds its
threshold range. This suggests that the SR effect observed in experiments
mainly resulted from the substantial alteration in the fabric of the
specimen, aligned with the perspective presented by Kuwano and Jar-
dine (2002). Here, we use the term “SR effect” to describe the phe-
nomenon where the measured A; deviates from the predicted A; as a
result of increasing or decreasing SR value, respectively. In the RTE/CTC
stress path, Chen and Yang (2024) observed that the SR effect on A,; (the
subscript “a” and “r” indicate axial and radical direction in triaxial tests,
respectively) is more remarkable in the extension case than in the
compression case, regardless of the definition of [¢]. This finding is
consistent within a specific SR range in this study, demonstrated in
Fig. 9. Here, the experimental data used for A, is derived from Ottawa
sand with a void ratio of approximately 0.7 and an initial stress state of
200 kPa after Chen and Yang (2024).

Generally, within the threshold range of SR, the three definitions of
[0'] result in the difference between the measured value and predicted
value being approximately less than 10 %. Nevertheless, the predictive
performance of using [¢'] = p’ is notably poorer, particularly for the A,,

in the RTE/CTC stress path. Using [¢'] = , /0}0} seems to be the optimal

choice, as it results in the closest alignment between measured and
predicted values across all stress paths when SR is within its threshold
range. This might explain why the study of DEM commonly adopts [¢/] =

\/0i0;. However, it is important to note that even when using [¢'] =

\/0i0;, discrepancies still exist between the measured Ay and the pre-

dicted A;. The extent of these discrepancies varies: in some stress paths
and planes, they are substantial, while in others, they are minimal. These
discrepancies can be clearly seen in Fig. 10, where the measured G;; /F(e)

is plotted against a;o} for different stress paths within the threshold SR

range. This implies that the redistribution of contact forces may also
contribute to the SR effect, although its impact is relatively small
compared to the fabric adjustment.

To quantify the extent to which the redistribution of contact forces
contributes to the SR effect, we introduce a factor, R, as defined below:

Go/F(@)/ (\fore) o)

Rej = 1/3
* [euren(yad )|

a7

init

where the subscript “init” denotes the initial state from which a stress
path initiated originates. Fig. 11 presents the SR effect on different
planes during PTE-D1/PTC-D1 tests. During these tests, when SR lies
within its threshold ranges, the specimen fabric remains nearly constant.
Hence, the SR effect can be attributed to the redistribution of contact
forces. The relationship between R, and SR is fitted by a power function
for simplicity and avoid overfitting. In addition, because SR = ¢/, /o),
and the denominator of Eq. (17) actually equal to the constant A, we can
derive the equation below for CT, RT, and PT tests:
1/3
Gy = AF(©) (/oo /p.)  (0/31)" a8)
where f is the SR exponent. In fact, Eq. (18) is an alternate form of Egs.
(4) and (6). Thus, when SR lies within its threshold range, G experiences
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a finite effect from the principal effective stress out-of-plane. In other
words, Egs. (4) and (6) are more accurate representations. However, it is
important to acknowledge that excluding SR effect would only result in a
minor discrepancy, which is generally within the experimental error
range.

Furthermore, we define the normalized small-strain shear modulus,
denoted as Gy, based on Eq. (18). The formulation is as follows:

1/3

Gay = Gy/F(e)/ (\/oi0) /pa) /(SR (19)
Theoretically, G, should be approximate the constant A when SR is
within its threshold range, considering that significant fabric adjustment
is absent. The evolution of G, in different stress paths is shown in Fig. 12.
As expected, when SR is within its threshold range, G, is nearly constant
and equal on different planes, especially for the dense specimen. The
variation in G, for the loose specimen can be attributed to the slight
reduction in Zp,.

3.4. Stiffness-stress-fabric relationship

When SR exceeds its threshold range during triaxial tests, G will
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experience a significant SR effect, which primarily resulted from the
adjustment of specimen fabric. To predict G across an extensive range of
SR during triaxial tests, correction factors have been integrated into
empirical equations, as indicated in previous studies (Yu and Richart,
1984; Payan et al., 2016; Chen and Yang, 2024). Nevertheless, these
modified formulas are all phenomenological, and their application
inevitably has limitations. Indeed, fabric information is indispensable to
accurately predict G when SR exceeds its threshold range. Yet, unlike the
linear correlation between G/a’ol/ 3 and (Zm/e)Z/ 3 at isotropic stress
states, the relationship between small-strain shear modulus, anisotropic
stress states and fabric has not been well established.

The shear stress in granular materials is primarily carried by “strong”
contacts, which are those with contact forces greater than the average
contact force (Radjai et al., 1998; Peters et al., 2005; Shi and Guo, 2018).
Therefore, the “strong” contact networks form anisotropic structures
that play an important role in the stiffness of granular materials. As
shown in Fig. 13, the “strong” force chains are randomly oriented in
isotropic stress states, displaying a relatively even probability density of
F/F in the HC stress path, where F denotes the average contact force.
However, the “strong” force chains are mainly oriented along the major
principal stress direction in anisotropic stress states, and the triaxial
loading reinforces the force inhomogeneity by increasing the relative
probability densities of both “strong” and “weak” contact forces. This
observation aligns consistently with previous findings (Antony, 2000;
Richefeu et al., 2009). Furthermore, in the simplified Hertz-Mindlin
contact model, the magnitude of the contact force also influences the
contact stiffness, which in turn affects the macroscopic stiffness of the
specimen. As a result, contacts with different contact forces contribute
differently to the G of the specimen.

In line with Gu and Yang (2013), we utilized the weighted me-
chanical coordination number, Z, to describe the “effective” connec-
tivity of fabric that contributes to the G of the specimen. In calculating

Z,_, each contact is weighed by a factor given by (F/F)'/. If we simplify

1/6
Gij/ (a}a}) /Rejas G, as shown in Fig. 14, we observe that G;/
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((Difbj)l/ ? has a strong linear relation to (Z/e) %3 Here, (d>i<1>j)1/ % ac-
counts for the influence of fabric anisotropy. This linear relationship
holds consistently under both isotropic and anisotropic stress states,
demonstrating the universal dependence of the normalized shear
modulus on the ‘effective’ connectivity and fabric anisotropy. This dis-
covery may contribute to the development of more accurate constitutive
models (e.g., Dafalias and Manzari, 2004), which account for fabric
change effects, thereby enhancing our understanding and prediction of
the mechanical behavior of granular materials.

4. Conclusions

The evolution of the small-strain shear modulus (G) of granular
materials during HC, CT, RT, and PT tests were studied utilizing 3D
DEM. Empirical equations were analyzed in various stress paths by
contrasting the predicted values with the actual measurements.
Furthermore, an investigation was conducted into the relationship be-
tween small-strain shear modulus, stress states, and fabric. The key
findings are summarized as follows:

(a) In the HC stress path, G can be precisely estimated using Hardin’s
equation (Eq. (1)). Moreover, the stress-normalized small-strain
shear modulus (G/ 0’01/ 3), exhibits a linear relationship with the
function of mechanical coordination number and void ratio, (Z,/
€)%/3, and the fabric of the specimen and distribution of contact
normal forces are relatively uniform.
In CT, RT, and PT stress paths, the fabric of the specimen remains
nearly unchanged within a threshold SR range. The differences
between the measured G and predicted G using empirical equa-
tions, including Egs. (2), (3), and (5), are roughly less than 10 %
within this threshold SR range. The performance of Eq. (5) is the
best. However, it should be noted that the principal effective
stress out-of-plane has a finite effect on the G in a given plane. A
factor, R, was introduced to evaluate the SR effect arising from
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Fig. 13. Evolution of contact force distribution in different stress paths: (a) force chains during RTE-D1/CTC-D1 tests; (b) probability density of F/F during the HC-D

test; (c) probability density of F/F during the RTE-D1/CTC-D1 tests.
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the redistribution of contact forces, which is fitted by the power
function of SR.

When SR surpasses its threshold range, G experiences a signifi-
cant SR effect and the empirical function is no longer applicable,
mainly resulting from the substantial adjustment of the specimen
fabric. The fabric information is crucial for accurately predicting
G when SR exceeds its threshold range. By incorporating the in-
fluence of redistribution of contact forces, “effective” connectiv-
ity of fabric, and fabric anisotropy into the empirical equation,
the stiffness-stress-fabric relationship was established across a
wide range of SR. This is demonstrated by the linear relationship
between the function of weighted mechanical coordination,

(Z'm/e)z/3 and Gy/ <6§0})1/6/Rc/(d>i<bj)l/2.

(©

It is to be noted that this study incorporates several simplifications,
such as the assumption of spherical particles, which differ from real
granular materials. To what extent such factors as particle morphology,
physical properties and particle size distribution influence the findings
presented here warrants further investigation.
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