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A B S T R A C T

This paper presents a comprehensive study on the evolution of the small-strain shear modulus (G) of granular 
materials during hydrostatic compression, conventional triaxial, reduced triaxial, and p-constant triaxial tests 
using 3D discrete element method. Results from the hydrostatic compression tests indicate that G can be precisely 
estimated using Hardin’s equation and that a linear correlation exists between a stress-normalized G and a 
function of mechanical coordination number and void ratio. During the triaxial tests, the specimen fabric, which 
refers to the contact network within the particle assembly, remains almost unchanged within a threshold range of 
stress ratio (SR). The disparity between measured G and predicted G, as per empirical equations, is less than 10% 
within this range. However, once this threshold range is exceeded, G experiences a significant SR effect, pri
marily due to considerable adjustments in the specimen’s fabric. The study concludes that fabric information 
becomes crucial for accurate G prediction when SR threshold is exceeded. A stiffness-stress-fabric relationship 
spanning a wide range of SR is put forward by incorporating the influences of redistribution of contact forces, 
effective connectivity of fabric, and fabric anisotropy into the empirical equation.

1. Introduction

The term “small-strain shear modulus” refers to the shear modulus at 
extremely small strain levels, typically below 10− 5. It is a basic soil 
property with clear physical meaning and has a wide range of applica
tions in geotechnical engineering (Yang, 2024), including earthquake 
ground response analyses, underground construction, and liquefaction 
potential assessment (Burland and Kalra, 1986; Andrus and Stokoe, 
2000; Clayton and Heymann, 2001; Zhou and Chen, 2007; Yang and 
Yan, 2009). The pioneering research on the small-strain shear modulus, 
G, of soil was carried out by Hardin and Richart (1963). They performed 
resonant column tests on granular soils and discovered that G in an 
isotropic stress state relies primarily on the void ratio, e, and effective 
confining stress, σ0́. Subsequent studies confirmed their observation and 
led to a general form for G (Kuribayashi et al., 1975; Iwasaki and Tat
suoka, 1977; Kokusho, 1980; Saxena and Reddy, 1989): 

G = AF(e)
(
σʹ

0/pa
)α (1) 

where A denotes a constant depending on the type of soil; F(e) is a 
function of void ratio and can be expressed as F(e) = (B − e)2

/(1 + e)
and B is typically taken as 2.17 for round particles; pa marks a reference 

stress; α designates the stress exponent.
Although isotropic stress conditions are commonly employed in 

laboratory element tests, soils in natural environments often experience 
anisotropic stress conditions, such as those found in slopes or under 
foundations. Unlike the case with isotropic stress conditions, a clear 
consensus regarding the relationship between G and anisotropic stress 
states remains elusive. Hardin and Black (1966) were the first to note 
that Eq. (1) is applicable to anisotropic stress states when replacing σ0́ 
with the mean effective stress, ṕ : 

G = AF(e)(pʹ/pa)
α (2) 

The validity of Eq. (2) has been upheld by experimental evidence under 
triaxial stress conditions (Kuribayashi et al., 1975; Schmertmann, 1978; 
Tatsuoka et al., 1979). However, some researchers reported that G is 
solely determined by the mean effective stress in the wave polarization 
plane, relatively independent of the principal effective stress in the out- 
of-plane direction (Knox et al., 1982; Yu and Richart, 1984; Santamarina 
and Cascante, 1996). Hence, it can be expressed as (Chen and Yang, 
2024): 
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Gij = AF(e)
(σʹ

i + σʹ
j

2pa

)α

(3) 

where σi and σj are the principal effective stresses in the i and j direction, 
i.e., the wave propagation and oscillation directions, respectively. The 
third perspective posits that it is not the mean principal stress, but the 
respective component of the principal effective stress in the polarization 
plane, which has the major influence on G (Roesler, 1979; Yu and 
Richart, 1984; Hardin and Blandford, 1989; Santamarina and Cascante, 
1996; Rampello et al., 1997; Dutta et al., 2021). Mathematically it can 
be described as follows (Yang, 2024): 

Gij = AF(e)p− αa − αb
a σαa

i σαb
j (4) 

where αa and αb are stress exponents of σi and σj, respectively. Never
theless, However, it remains an open question whether σi and σj 

contribute equally to the associate Gij, i.e., αa = αb. Some researchers 
deemed that αa ∕= αb (Roesler, 1979; Yu and Richart, 1984; Santamarina 
and Cascante, 1996), while others suggested that αa = αb and Eq. (4) can 
be simplified as (Hardin and Blandford, 1989; Rampello et al., 1997; 
Dutta et al., 2021): 

Gij = AF(e)
( ̅̅̅̅̅̅̅̅

σʹ
iσʹ

j

√
/pa

)α
(5) 

In addition, Bellotti et al. (1996) modified Eq. (4) to account for the 
influence of effective principal stress in the third direction: 

Gij = AF(e)p− αa − αb − αc
a σαa

i σαb
j σαc

k (6) 

where σk is the third (i.e., out-of-plane) principal effective stress, and αc 
denotes the stress exponent of σk. This Equation was also adopted by 
Kuwano and Jardine (2002) in a different form. However, it is crucial to 
point out that αc is remarkably smaller αa and αb.

Despite the difference in empirical equations, the influence of stress 
ratio (SR) on G has been widely observed. For instance, Kuribayashi 
et al. (1975) found their test results could not be explained by Eq. (2)
when SR was greater than 2.5 under triaxial compression conditions. 
Similarly, Tatsuoka et al. (1979) reported that the effect of SR on G 
became significant when SR > 4 in triaxial compression cases. Yu and 
Richart (1984) observed that when SR was larger than 2.4–3.0, the effect 
of SR on G was greater than 10 %. Kuwano and Jardine (2002) discov
ered that G was distinctly lower than expected when SR was above 2.2. 
To account for the effect of SR, various correction factors have been 
proposed and integrated into empirical equations, e.g., factor Kn pro
posed by Yu and Richart (1984), factor (η+1) given by Payan et al. 
(2016), and factor R suggested by Chen and Yang (2024).

It is widely recognized that the macroscopic properties of granular 
materials are closely related to the underlying microscopic fabric (Chang 
et al., 1995; Thornton, 2000; Magnanimo et al., 2008; Yimsiri and Soga, 
2010; Yang and Dai, 2011; Gu and Yang, 2013; Guo and Zhao, 2013; 
Otsubo et al., 2020; Zhang and Yang, 2023). Fabric typically refers to the 
contact network when it comes to the stiffness of granular materials. In 
the empirical equations previously mentioned, factor A represents G/
F(e) measured in a reference isotropic stress state of pa, and the stress 
component exponents (e.g., α) stem from the sensitivity of G to stress 
states. Given that G is a constant-fabric measurement in a specific stress 
state, and that A and stress exponents are determined by fitting the 
power function to G in different anisotropic stress states, the influence of 
both inherent soil fabric and changes in soil fabric during loading are 
intrinsically factored in (Cha et al., 2014). As previous studies included 
different testing materials, shape of specimens, and stress paths, the 
resulting variances in soil fabric may have led to differing results, thus 
contributing to the variety of empirical equations. Moreover, under 
substantial deviatoric stress, granular materials may undergo significant 
adjustments in microscopic structure (Oda, 1972; Hasan and Alshibli, 
2012; Schmidt et al., 2022), which could account for the observed 

effects of SR in experimental studies (Kuwano and Jardine, 2002). 
Therefore, fabric information is crucial for accurately determining and 
comprehending the G of granular materials in anisotropic stress states.

Several advanced scanning techniques such as scanning electron 
microscopy and X-ray Computed Tomography, along with testing 
methods like the photo-elastic experiment, have been employed to 
measure the fabric of granular materials (Majmudar and Behringer, 
2005; Mitaritonna et al., 2014; Wiebicke et al., 2020). Nonetheless, the 
practical application of these technologies can be complex, time- 
consuming, labor-intensive, and expensive. Meanwhile, the discrete 
element method (DEM), pioneered by Cundall and Strack (1979), pro
vides a convenient approach to conduct a comprehensive quantitative 
assessment of fabric throughout the testing procedure. This method has 
become increasingly popular in the study of small-strain stiffness. For 
example, Wang and Mok (2008) conducted both experimental and DEM 
studies on the anisotropy of G. demonstrating that G exhibits relative 
independence from the out-of-plane stress. Gu et al. (2013) performed 
triaxial tests using 2D DEM and discovered that the fabric of granular 
materials remains nearly constant within a specific SR range. However, 
if SR surpasses this range, the fabric adjusts significantly to resist 
anisotropic stresses. O’Donovan et al. (2015) executed the DEM simu
lation with a face-centered cubic assembly, claiming that the principal 
effective stress out-of-plane has a finite impact on G. Nguyen et al. 

(2018) confirmed the relationship between Gij and 
̅̅̅̅̅̅̅̅
σ íσj́

√
through DEM 

simulation of true triaxial tests. Gu et al. (2023) measured the shear 
wave velocities in conventional triaxial and true triaxial tests by DEM, 
showing the dependency of stress normalized shear wave velocities (or 
G) on the contact normal densities in the wave propagation and particle 
oscillation directions. Gong et al. (2024) explored the effects of particle 
shape, physical properties and particle size distribution on G in isotropic 
stress states through DEM. They found that G uniquely depends on the 
mechanical coordination number and contact stiffness, suggesting an 
empirical expression to depict their relationship.

With the help of DEM, significant progress has been made in un
derstanding the relationship between the small-strain shear modulus, 
stress states, and fabric. For example, Gij tends to be proportional to 
̅̅̅̅̅̅̅̅
σ íσj́

√
, and is affected by the distribution of contact force, contact 

normal, and coordination number (Gu et al., 2017; Nguyen et al., 2018; 
Gong et al., 2019; Otsubo et al., 2020; Liu et al., 2023). However, pre
vious studies have typically encompassed a limited array of stress 
combinations or stress paths, and the inconsistencies identified in these 
studies have not been thoroughly resolved. These constraints have 
muddled the clarity of their data and affected the generality of their 
conclusions. Moreover, the accuracy of these empirical equations may 
be compromised due to adjustments in fabric (Gu et al., 2023). Conse
quently, it is imperative to further investigate the relationship between 
the small-strain shear modulus, stress states, and fabric.

To gain a comprehensive perception of the small-strain shear 
modulus of granular materials under various stress conditions and to 
explore the quantitative stiffness-stress-fabric relationship, we carried 
out systematic DEM simulations on the randomly packed samples. These 
simulations encompassed a variety of tests, including hydrostatic 
compression (HC), conventional triaxial (CT), reduced triaxial (RT), and 
p-constant triaxial (PT) tests. Concurrently, G of the specimen and cor
responding microstructure were monitored. The new contributions of 
this study are: (a) an attempt to reconcile the divergent views in the 
literature concerning the impact of anisotropic stress states on the small- 
strain shear modulus, and to introduce a factor, Rc, to account for the SR 
effect arising from the redistribution of contact forces; (b) a proposal of a 
quantitative relationship linking the small-strain shear modulus with 
anisotropic stress states and the fabric of granular materials across an 
extensive range of SR.
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2. Simulation Method

2.1. Specimen Generation

In a DEM simulation, the selection of contact model is significant. We 
adopted a simplified Hertz-Mindlin contact model, as depicted in Fig. 1, 
to capture the stress-dependent stiffness (Jiang and Yang, 2024). The 
contact force, F, which comprises the hertz force and dashpot force, can 
be decomposed into the normal and tangential components. The normal 
hertz force, Fh

n, can be formulated as follows: 

Fh
n =

2
3
knδn (7) 

where kn is the tangent elastic stiffness in the normal direction; δn de
notes normal contact overlap. The tangential hertz force, Fh

t , is 
restrained by the law of Coulomb friction, which can be expressed as: 

(
Fh

t
)T

=

⎧
⎨

⎩

(
Fh

t
)T− 1

− ktΔδt,
(
Fh

t
)T

≤ μFh
n

μFh
n , else

(8) 

where 
(
Fh

t
)T and 

(
Fh

t
)T− 1 are the tangential hertz force at current time 

step, T, and former time step, T − 1, respectively; kt represent the 
tangent elastic stiffness in the tangential directions; Δδt indicates the 
relative tangential displacement increment; μ signifies the friction co
efficient. The normal dashpot force, Fd

n, and tangential dashpot force, Fd
t , 

are updated by: 
⎧
⎪⎨

⎪⎩

Fd
n = − cnδ̇n

Fd
t = − ctδ̇t

(9) 

where cn and ct represent the normal and tangential viscous damping 
coefficients, respectively; δ̇n and δ̇t denote the relative translational 
velocity in the normal and tangential directions, respectively.

We carried out the DEM simulations utilizing PFC3D (Itasca Consul
ting Group, 2015). Cubic specimens, comprising 12,991 spherical par
ticles, were used, which adhered to the particle size distribution of 
Ottawa 50–70 sand, as illustrated in Fig. 1. The specimen’s coefficient of 
uniformity, Cu, measured 1.23, and the mean particle diameter, d50, is 
0.26 mm. The radius expansion method was utilized to generate the 
specimen. To begin, spherical particles were randomly generated within 
a cubic space measuring 6 mm on each side, bounded by three pairs of 
frictionless walls. These particles were initially set to half their intended 
size, then underwent gradual enlargement to attain their final sizes. 
Following this, the newly formed assembly was subjected to isotropic 

compression until it achieved a stress condition of 10 kPa. Notably, the 
local damping coefficient was set to 0.7 to expedite the attainment of 
equilibrium, and different inter-particle friction coefficients were used 
during this process to generate the specimen with different e. Subse
quently, the inter-particle friction coefficient was adjusted to 0.5, the 
local damping was removed, and the normal critical damping ratio was 
set at 0.1. The specimen was then further isotropically compressed to 
achieve an initial stress level of 100 kPa. Interim inter-particle friction 
coefficients of 0 and 0.2 were used to generate a dense specimen with an 
initial e-value of 0.6192 and a loose specimen with an initial e-value of 
0.7384. These e values correspond to relative densities of 100 % and 
20.1 %, respectively. The specimen with the maximum initial e-value of 
0.7684 was prepared using an interim inter-particle friction coefficient 
of 0.5. The final dimensions are 5.83 mm and 5.69 mm on each side for 
the loose and dense specimens, respectively. The study of Wiącek and 
Molenda (2016) suggests that a granular packing dimension of at least 
15 times the mean particle diameter is sufficient to minimize wall effects 
and ensure representative average values. Since the specimen di
mensions in this study exceed 20d50, the influence of size effects can be 
considered negligible.

In our DEM simulations, the material property parameters were set 
to match the typical values of natural quartz grains, which has been 
widely adopted in prior studies (Ng and Petrakis, 1996; Gu et al., 2017; 
Liu et al., 2023; Gong et al., 2024; Jiang and Yang, 2024). The detailed 
parameters used in the specimen are summarized in Table 1. Conse
quently, at the initial stress level of 100 kPa, G is approximately 180 
MPa for the dense specimen and 100 MPa for the loose specimen. These 
values of G were measured using the probe test, the methodology of 
which is introduced in detail in the following section.

2.2. Stress path and probe test

The specimen was initially isotropically compressed from 100 to 

Fig. 1. Particle size distribution and contact law in DEM specimen (Experiment result from Chen and Yang (2024)).

Table 1 
Parameters used in the simulation.

Particle shape Spherical No. of particles 12,991
Contact law Hertz- 

Mindlin
Particle density 2660 kg/ 

m3

Wall shear modulus 29 GPa Particle shear modulus 29 GPa
Wall Poisson’s ratio 0.15 Particle Poisson’s ratio 0.15
Wall-particle friction 

coefficient
0 Inter-particle friction 

coefficient
0.5

Normal critical damping 
ratio

0.1 Tangential critical 
damping ratio

0

Local damping 
coefficient

0 Gravity 0 m/s2
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1000 kPa to create a reference dataset. Then, from isotropic stress states 
of 100, 200, 500, and 1000 kPa, consolidation was implemented along 
different stress paths to achieve the target anisotropic stress states. These 
stress paths include CT, RT, and PT tests, as shown in Fig. 2. In the CT 
stress path, the stresses in the horizontal directions, σʹ

h (i.e., σx́and σý), 
were maintained constant while the stress in the vertical directions, σv́ 
(i.e., σź), was gradually increased for conventional triaxial compression 
(CTC); σv́ remained constant while σʹ

h was progressively increased for 
conventional triaxial extension (CTE). In the RT stress path, σv́ was kept 
constant while σʹ

hwas monotonically decreased for reduced triaxial 
compression (RTC); σʹ

h was held constant while σv́ was successively 
decreased for reduced triaxial extension (RTE). Furthermore, in the PT 
stress path, ṕ  stayed constant while σʹ

h decreased and σv́ increased 
simultaneously for p-constant triaxial compression (PTC); ṕ  guaranteed 
constant while σʹ

h increased and σv́ decreased coterminously for p-con
stant triaxial extension (PTE). Particularly, SR is defined as σv́/σʹ

h in this 
study.

The test programs are summarized in Table 2. Here, the test ID is 
named according to the loading path, the density of specimen, and stress 
level. For instance, “HC-L” signifies a HC stress path applied to the loose 
specimen; “CTC-D1” represents a CTC stress path initiated from the 
lowest stress level (i.e., 100 kPa) for the dense specimen. The mean 
effective stress, ṕ , and deviatoric stress, q, are defined as 
⎧
⎪⎪⎨

⎪⎪⎩

ṕ = (σʹ
x + σʹ

y + σʹ
z)/3,

q =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[(
σʹ

x − σʹ
y

)2
+
(

σʹ
y − σʹ

z

)2
+
(
σʹ

z − σʹ
x
)2

]

/2

√
(10) 

The dimensionless parameter—inertia number, I, has been exten
sively utilized to identify the flow regime of granular materials (da Cruz 
et al., 2005; Peyneau and Roux, 2008; Perez et al., 2016). It denotes as 
I = |ε̇|d50

̅̅̅̅̅̅̅̅̅̅
ρs/pʹ√

, where ε̇ is the strain rate and ρs refers to the particle 
density. The response of the granular assembly is generally considered 
quasi-static, with negligible inertial effects, when I falls below 10− 3 (van 
der Elst et al., 2012). During the tests, the target stress state was ach
ieved by moving the boundary walls with a servo system. To ensure a 
quasi-static response, the maximum velocity of the walls was limited to 
0.05 mm/s, thus keeping the inertia number far smaller than 10− 3.

The probe test was performed at specific intervals, with the probing 

frequency documented in Table 2. Noting that under anisotropic stress 
states, the simple-shear-type probe test is a more appropriate and reli
able method for measuring small-strain shear modulus compared with 
the triaxial-type probe test, the Gki in the ki plane is determined using the 
equation below: 

Gki = Δτki/Δγki (11) 

where Δτki and Δγki are the stress increment and strain increment in the 
ki plane, respectively. The probe test continues until the shear strain 
increment reaches 10-6. During the probe tests, the shear strain rate is 
maintained at 10− 3/s, ensuring that the inertia number remains smaller 
than 10− 8. In addition, as suggested by Cundall et al. (1989), the inter- 
particle friction coefficient was assigned an infinite value during the 
probe test. This strategy was employed to inhibit sliding between par
ticles and thereby rule out plastic deformation of the specimen.

3. Results and Analysis

3.1. HC tests

The evolution of G during HC tests is depicted in Fig. 3. As shown in 
Fig. 3(a), G in different directions exhibit near-identical values, sug
gesting isotropy within the specimen. Moreover, as expected, G in
creases with the increasing confining pressure. Fig. 3(b) demonstrates 
that G/F(e) has a strong power relationship with σ0́/pa, where 
F(e) = (1.22 − e)2

/(1 + e) and pa = 1 kPa. This relationship aligns with 
Hardin’s equation, as formulated in Eq. (1), with the constant B = 1.22 
to give a unified relationship for both loose and dense specimens.

The increase of shear modulus is concurrent with the adjustment of 
specimen fabric. As shown in Fig. 4(a), e declines while the mechanical 
coordination number, Zm, ascends with the increasing confining pres
sure. Zm represents the coordination number considering only me
chanically stable particles, and is defined as (Thornton, 2000): 

Zm =
2Nc − N1

p

Np − N1
p − N0

p
(12) 

where Nc is the number of contact point; Np denotes the number of 
particles; N1

p and N0
p designate the number of particles maintaining a 

single contact and devoid of any contact with other entities, respec
tively. Previous studies have demonstrated that G is closely linked to Zm 
under hydrostatic conditions. For instance, linear relationships have 
been established between G/σ0́

1/3 and (Zm/e)2/3 (Nie et al., 2022). This 
linear relationships were also observed in this study as shown in Fig. 4
(b), underscoring the close interplay between the small-strain shear 
modulus, stress states, and fabric of granular materials.

3.2. Triaxial tests

CT, RT, and PT tests were initiated from isotropic stress states of 100, 
200, 500, and 1000 kPa. Given similar results across various initial stress 
levels, we present only one portion here for brevity. As shown in Fig. 5
(a–c), G can vary significantly in different planes due to the anisotropic 
stress states. Especially, the degree of anisotropy in G escalates with 
increasing stress anisotropy. In different stress paths, Gyz and Gzx can be 
considered identical, suggesting the transversely isotropic symmetry of 
the specimen. Gu et al. (2013, 2017) reported that there are threshold 
values of SR, termed as SRth, along the RTE/CTC. Within the ranges 
demarcated by two SRth, the coordination number, Z, or mechanical 
coordination number, Zm, exhibits minimal variation; however, when 
SR surpasses this range, a significant reduction in Z or Zm was observed. 
This trend is also visible in all triaxial stress paths in our study, as shown 
in Fig. 5(d–f). Especially for the dense specimen, Zm remains nearly 
constant as the SR resides the range between two threshold values. The 
change in G is contingent on the variation of stress level. Nevertheless, Fig. 2. Stress path of HC, CT, RT, and PT tests.
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Table 2 
Summary of test programs.

Test ID Initial state Final state Test ID Initial state Final state Probing frequency
ṕ (kPa) q (kPa) e SR ṕ (kPa) q (kPa) e SR ṕ (kPa) q (kPa) e SR ṕ (kPa) q (kPa) e SR

HC-D 100.0 0 0.6192 1.0 1000.0 0 0.6143 1.00 HC-L 100.0 0 0.7384 1.0 1000.0 0 0.7319 1.0 per 100 kPa*
CTC-D1 100.0 0 0.6192 1.0 146.7 140.0 0.6188 2.40 CTC-L1 100.0 0 0.7384 1.0 120.0 60.0 0.7381 1.60 per 10 kPa
CTE-D1 193.3 140.0 0.6184 0.42 CTE-L1 140.0 60.0 0.7379 0.63 per 10 kPa
RTC-D1 63.3 55.0 0.6195 2.22 RTC-L1 76.7 35.0 0.7387 1.54 per 5 kPa
RTE-D1 80.0 60.0 0.6194 0.40 RTE-L1 86.7 40.0 0.7386 0.60 per 5 kPa
PTC-D1 100.0 95.5 0.6192 2.40 PTC-L1 100.0 50.0 0.7384 1.60 per 0.1 SR
PTE-D1 100.0 75.0 0.6192 0.40 PTE-L1 100.0 46.2 0.7384 0.60 per 0.1 SR
CTC-D2 200.0 0 0.6184 1.0 293.3 280.0 0.6178 2.40 CTC-L2 200.0 0 0.7374 1.0 240.0 120.0 0.7369 1.60 per 20 kPa
CTE-D2 386.7 280.0 0.6172 0.42 CTE-L2 280.0 120.0 0.7366 0.63 per 20 kPa
RTC-D2 126.7 110.0 0.6189 2.22 RTC-L2 153.3 70.0 0.7378 1.54 per 10 kPa
RTE-D2 160.0 120.0 0.6187 0.40 RTE-L2 173.3 80.0 0.7375 0.60 per 10 kPa
PTC-D2 200.0 190.9 0.6184 2.40 PTC-L2 200.0 100.0 0.7373 1.60 per 0.1 SR
PTE-D2 200.0 150.0 0.6184 0.40 PTE-L2 200.0 92.3 0.7373 0.60 per 0.1 SR
CTC-D3 500.0 0 0.6166 1.0 733.3 700.0 0.6155 2.40 CTC-L3 500.0 0 0.7349 1.0 600.0 300.0 0.7341 1.60 per 50 kPa
CTE-D3 966.7 700.0 0.6145 0.42 CTE-L3 700.0 300.0 0.7335 0.63 per 50 kPa
RTC-D3 316.7 275.0 0.6176 2.22 RTC-L3 383.3 175.0 0.7357 1.54 per 25 kPa
RTE-D3 400.0 300.0 0.6172 0.40 RTE-L3 433.3 200.0 0.7353 0.60 per 25 kPa
PTC-D3 500.0 477.3 0.6166 2.40 PTC-L3 500.0 250.0 0.7348 1.60 per 0.1 SR
PTE-D3 500.0 375.0 0.6166 0.40 PTE-L3 500.0 230.8 0.7348 0.60 per 0.1 SR

CTC-D4 1000.0 0 0.6143 1.0 1466.7 1400.0 0.6126 2.40 CTC-L4 1000.0 0 0.7319 1.0 1200.0 600.0 0.7307 1.60 per 100 kPa
CTE-D4 1933.3 1400.0 0.6110 0.42 CTE-L4 1400.0 600.0 0.7297 0.63 per 100 kPa
RTC-D4 633.3 550.0 0.6159 2.22 RTC-L4 766.7 350.0 0.7331 1.54 per 50 kPa
RTE-D4 800.0 600.0 0.6152 0.40 RTE-L4 866.7 400.0 0.7325 0.60 per 50 kPa
PTC-D4 1000.0 954.5 0.6144 2.40 PTC-L4 1000.0 500.0 0.7318 1.60 per 0.1 SR
PTE-D4 1000.0 750.0 0.6144 0.40 PTE-L4 1000.0 461.5 0.7317 0.60 per 0.1 SR

*Every 20 kPa when effective stress is from 100 kPa to 200 kPa.
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irrespective of the plane they are in, a marked decline in G is correlated 
with a decrease in Zm when SR surpasses its threshold values.

Moreover, consistent with Zm, fabric anisotropy also remains almost 
constant within the range demarcated by two SRth, as corroborated by 
the contact normal probability density and the anisotropy factor, ar, 
shown in Fig. 6. The contact normal probability density, f(θ,φ), was 
calculated according to the following formula: 

f(θ,φ) =
P
(
θi ≤ θ < θi+1,φj ≤ φ < φj+1

)

∫ φj+1
φj

∫ θi+1
θi

θdθdφ
(13) 

where P denotes the probability of a contact normal pointing to a spe
cific directional range; θ and φ are the polar angle and azimuth angle 
respectively, in the context of spherical coordinates; the subscripts i, i +
1, j, and j + 1 represent the lower limit and upper limit of the directional 
range, respectively.

The fabric tensor, Φ, is commonly used to evaluate the anisotropic of 
fabric, defined as (Satake, 1978; Oda, 1982; Barreto et al., 2009; Zhang 
et al., 2023): 

Φij =
1
Nc

∑Nc

c=1
nc

i n
c
j (14) 

where ni and nj are the component of a unit contact normal in the i and j 
directions, respectively. Furthermore, the degree of anisotropy is typi
cally quantified using ar, defined as: 

ar =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2
DijDji

√

(15) 

where the deviatoric tensor Dij denotes as Dij = 15
2 (Φij −

1
3δij), and δij is 

Kronecker delta. Within the two threshold values of SR, the contact 
normal probability density in each direction remains almost unchanged, 
and ar values are nearly 0. However, the magnitude of contact normal 
forces, as also illustrated in Fig. 6, fluctuates with alterations in the 
principal effective stress, irrespective of the degree of fabric anisotropy. 
The mean contact normal force refers to the average magnitude of 
contact normal forces within a designated directional region. Generally, 
there is a direct correlation between the magnitude of contact normal 
forces and the principal effective stress in the same direction—as one 
increases, so does the other, and vice versa.

The results discussed above suggest that the specimen may adjust the 
distribution of contact forces and its fabric to accommodate changes in 
stress during triaxial tests. The change in G primarily stems from the 
redistribution of contact forces when SR lies within its threshold range. 
While, once SR exceeds this range, both the adjustment of contact force 
and fabric contribute to the variation of G. The evolution of deviatoric 
strain, εq, and volumetric strain εv also keeps consistent with the 
adjustment of microscopic structure, as depicted in Fig. 7. Here, 

εv = εx +εy +εz and εq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
9

[(
εx − εy

)2
+ (εx − εz)

2
+
(
εy − εz

)2
]√

. 

Generally, when SR is within its threshold range, εq tends to increase 
linearly, mirroring the changes in SR. However, once SR surpasses its 
threshold range, the rate at which εq increases accelerates significantly. 
The evolution of εv relies on the change in pʹ. Specifically, an increase in 
ṕ  typically leads to the contraction of specimen volume (i.e., εv in
creases). Conversely, a decrease in ṕ  would cause the swell in specimen 
volume (i.e., εv decreases). For the PT tests, since ṕ  remains constant, εv 
also stays unchanged accordingly. It is worth noting that as SR in
creases/decreases beyond its threshold range, the dense specimen tends 
to dilate, whereas the loose specimen exhibits a tendency to contract. 
However, due to the limited values of SR were considered in this study, 

Fig. 3. (a) Evolution of G during HC tests and (b) power law between Gij/F(e) and σ0́/pa.

Fig. 4. (a) Evolution of e and Zm; (b) Gij/σ0́ vs. (Zm/e)2/3 during HC tests (Gij in MPa and σ0́ in kPa).

M. Jiang and J. Yang                                                                                                                                                                                                                          Computers and Geotechnics 183 (2025) 107183 

6 



Fig. 5. Evolution of (a–c) Gij and (d–f) Zm with SR during CT, RT, and PT tests initialed from the stress level of 100 kPa.

Fig. 6. Contact normal probability density and mean contact normal forces distribution in RTE-D1/CTC-D1 tests.
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these phenomena are not explicitly observed across all stress paths.

3.3. Comparison of empirical equations

Several empirical equations, notably Eqs. (2), (3), and (5) exist to 
illustrate the correlation between G and anisotropic stress states. In 

these equations, the stress level, [σʹ], is taken as ṕ , (σ í + σ j́)/2, and 
̅̅̅̅̅̅̅̅
σ íσ j́

√
, 

respectively. We aim to evaluate the efficacy of these empirical equa
tions across different stress paths. To begin, the factor, Δ, was intro
duced, as a means to assess the extent of deviation of G/F(e) from its 
initial state at the onset of the triaxial tests: 

Δij =
Gij/F(e)

[
Gij/F(e)

]

init

(16) 

where 
[
Gij/F(e)

]

init is the initial Gij/F(e). As shown in Fig. 8, Δij 

measured in this study are compared with those predicted by different 
Equations. In spite of the stress path, the measured value starts to 
significantly deviate from the predicted values when SR exceeds its 
threshold range. This suggests that the SR effect observed in experiments 
mainly resulted from the substantial alteration in the fabric of the 
specimen, aligned with the perspective presented by Kuwano and Jar
dine (2002). Here, we use the term “SR effect” to describe the phe
nomenon where the measured Δij deviates from the predicted Δij as a 
result of increasing or decreasing SR value, respectively. In the RTE/CTC 
stress path, Chen and Yang (2024) observed that the SR effect on Δar (the 
subscript “a” and “r” indicate axial and radical direction in triaxial tests, 
respectively) is more remarkable in the extension case than in the 
compression case, regardless of the definition of [σʹ]. This finding is 
consistent within a specific SR range in this study, demonstrated in 
Fig. 9. Here, the experimental data used for Δar is derived from Ottawa 
sand with a void ratio of approximately 0.7 and an initial stress state of 
200 kPa after Chen and Yang (2024).

Generally, within the threshold range of SR, the three definitions of 
[σʹ] result in the difference between the measured value and predicted 
value being approximately less than 10 %. Nevertheless, the predictive 
performance of using [σʹ] = ṕ  is notably poorer, particularly for the Δxy 

in the RTE/CTC stress path. Using [σʹ] =
̅̅̅̅̅̅̅̅
σ íσ j́

√
seems to be the optimal 

choice, as it results in the closest alignment between measured and 
predicted values across all stress paths when SR is within its threshold 
range. This might explain why the study of DEM commonly adopts [σʹ] =

̅̅̅̅̅̅̅̅
σ íσ j́

√
. However, it is important to note that even when using [σʹ] =

̅̅̅̅̅̅̅̅
σ íσ j́

√
, discrepancies still exist between the measured Δij and the pre

dicted Δij. The extent of these discrepancies varies: in some stress paths 
and planes, they are substantial, while in others, they are minimal. These 
discrepancies can be clearly seen in Fig. 10, where the measured Gij/F(e)

is plotted against 
̅̅̅̅̅̅̅̅
σ íσ j́

√
for different stress paths within the threshold SR 

range. This implies that the redistribution of contact forces may also 
contribute to the SR effect, although its impact is relatively small 
compared to the fabric adjustment.

To quantify the extent to which the redistribution of contact forces 
contributes to the SR effect, we introduce a factor, Rc, as defined below: 

Rcij =
Gij/F(e)/

( ̅̅̅̅̅̅̅̅
σʹ

iσʹ
j

√
/pa

)1/3

[

Gij/F(e)/
( ̅̅̅̅̅̅̅̅

σʹ
iσʹ

j

√
/pa

)1/3
]

init

(17) 

where the subscript “init” denotes the initial state from which a stress 
path initiated originates. Fig. 11 presents the SR effect on different 
planes during PTE-D1/PTC-D1 tests. During these tests, when SR lies 
within its threshold ranges, the specimen fabric remains nearly constant. 
Hence, the SR effect can be attributed to the redistribution of contact 
forces. The relationship between Rc and SR is fitted by a power function 
for simplicity and avoid overfitting. In addition, because SR = σv́/σʹ

h, 
and the denominator of Eq. (17) actually equal to the constant A, we can 
derive the equation below for CT, RT, and PT tests: 

Gij = AF(e)
( ̅̅̅̅̅̅̅̅

σʹ
iσʹ

j

√
/pa

)1/3(
σʹ

v/σʹ
h
)β (18) 

where β is the SR exponent. In fact, Eq. (18) is an alternate form of Eqs. 
(4) and (6). Thus, when SR lies within its threshold range, G experiences 

Fig. 7. Evolution of (a–b) deviatoric strain and (c–d) volumetric strain of the dense specimen during triaxial tests initialed from the stress level of 100 kPa.
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Fig. 8. Comparison of measured and predicted Δij during RTE-D1/CTC-D1, RTC-D1/CTE-D1, and PTE-D1/PTC-D1 tests for different [σʹ] definitions: (a–c) [σʹ] = ṕ ; 

(d–f) [σʹ] = (σí + σ j́)/2; and (g–i) [σʹ] =
̅̅̅̅̅̅̅̅
σíσ j́

√
. (Note: ‘x’ is affixed to the marker when SR exceeds its threshold values).

Fig. 9. Comparison of measured and predicted Δij (“D” indicates the dense specimen and “L” refers to the loose specimen; the experimental data of Δar is from Chen 
and Yang (2024)) during RTE/CTC tests initiated from an isotropic stress state of 200 kPa for different [σʹ] definitions: (a) [σʹ] = ṕ ; (b) [σʹ] = (σ í + σ j́)/2; and (c) [σʹ] =

̅̅̅̅̅̅̅̅
σ íσj́

√
(Note: ‘x’ is affixed to the marker when SR exceeds its threshold values).
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a finite effect from the principal effective stress out-of-plane. In other 
words, Eqs. (4) and (6) are more accurate representations. However, it is 
important to acknowledge that excluding SR effect would only result in a 
minor discrepancy, which is generally within the experimental error 
range.

Furthermore, we define the normalized small-strain shear modulus, 
denoted as Gn, based on Eq. (18). The formulation is as follows: 

Gnij = Gij/F(e)/
( ̅̅̅̅̅̅̅̅

σʹ
iσʹ

j

√
/pa

)1/3
/(SR)β (19) 

Theoretically, Gn should be approximate the constant A when SR is 
within its threshold range, considering that significant fabric adjustment 
is absent. The evolution of Gn in different stress paths is shown in Fig. 12. 
As expected, when SR is within its threshold range, Gn is nearly constant 
and equal on different planes, especially for the dense specimen. The 
variation in Gn for the loose specimen can be attributed to the slight 
reduction in Zm.

3.4. Stiffness-stress-fabric relationship

When SR exceeds its threshold range during triaxial tests, G will 

Fig. 10. (a) Gxy/F(e) vs. 
̅̅̅̅̅̅̅̅̅̅
σx́σý

√
and (b) Gyz/F(e) vs. 

̅̅̅̅̅̅̅̅̅
σýσź

√
in different stress paths within the threshold SR range.

Fig. 11. Contribution of redistribution of contact forces to the SR effect.

Fig. 12. Evolution of Gn (Gij in MPa, 
̅̅̅̅̅̅̅̅
σíσj́

√
in kPa) during different triaxial tests: (a) RTE/CTC; (b) CTE/RTC; and PTE/PTC tests.
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experience a significant SR effect, which primarily resulted from the 
adjustment of specimen fabric. To predict G across an extensive range of 
SR during triaxial tests, correction factors have been integrated into 
empirical equations, as indicated in previous studies (Yu and Richart, 
1984; Payan et al., 2016; Chen and Yang, 2024). Nevertheless, these 
modified formulas are all phenomenological, and their application 
inevitably has limitations. Indeed, fabric information is indispensable to 
accurately predict G when SR exceeds its threshold range. Yet, unlike the 
linear correlation between G/σ0́

1/3 and (Zm/e)2/3 at isotropic stress 
states, the relationship between small-strain shear modulus, anisotropic 
stress states and fabric has not been well established.

The shear stress in granular materials is primarily carried by “strong” 
contacts, which are those with contact forces greater than the average 
contact force (Radjai et al., 1998; Peters et al., 2005; Shi and Guo, 2018). 
Therefore, the “strong” contact networks form anisotropic structures 
that play an important role in the stiffness of granular materials. As 
shown in Fig. 13, the “strong” force chains are randomly oriented in 
isotropic stress states, displaying a relatively even probability density of 
F/F in the HC stress path, where F denotes the average contact force. 
However, the “strong” force chains are mainly oriented along the major 
principal stress direction in anisotropic stress states, and the triaxial 
loading reinforces the force inhomogeneity by increasing the relative 
probability densities of both “strong” and “weak” contact forces. This 
observation aligns consistently with previous findings (Antony, 2000; 
Richefeu et al., 2009). Furthermore, in the simplified Hertz-Mindlin 
contact model, the magnitude of the contact force also influences the 
contact stiffness, which in turn affects the macroscopic stiffness of the 
specimen. As a result, contacts with different contact forces contribute 
differently to the G of the specimen.

In line with Gu and Yang (2013), we utilized the weighted me
chanical coordination number, Zḿ, to describe the “effective” connec
tivity of fabric that contributes to the G of the specimen. In calculating 
Zḿ, each contact is weighed by a factor given by (F/F)1/3. If we simplify 

Gij/
(

σ íσj́

)1/6
/Rcijas Gńij, as shown in Fig. 14, we observe that Gńij/

(
ΦiΦj

)1/2 has a strong linear relation to 
(
Zḿ/e

)2/3. Here, 
(
ΦiΦj

)1/2 ac
counts for the influence of fabric anisotropy. This linear relationship 
holds consistently under both isotropic and anisotropic stress states, 
demonstrating the universal dependence of the normalized shear 
modulus on the ‘effective’ connectivity and fabric anisotropy. This dis
covery may contribute to the development of more accurate constitutive 
models (e.g., Dafalias and Manzari, 2004), which account for fabric 
change effects, thereby enhancing our understanding and prediction of 
the mechanical behavior of granular materials.

4. Conclusions

The evolution of the small-strain shear modulus (G) of granular 
materials during HC, CT, RT, and PT tests were studied utilizing 3D 
DEM. Empirical equations were analyzed in various stress paths by 
contrasting the predicted values with the actual measurements. 
Furthermore, an investigation was conducted into the relationship be
tween small-strain shear modulus, stress states, and fabric. The key 
findings are summarized as follows: 

(a) In the HC stress path, G can be precisely estimated using Hardin’s 
equation (Eq. (1)). Moreover, the stress-normalized small-strain 
shear modulus (G/σ0́

1/3), exhibits a linear relationship with the 
function of mechanical coordination number and void ratio, (Zm/ 
e)2/3, and the fabric of the specimen and distribution of contact 
normal forces are relatively uniform.

(b) In CT, RT, and PT stress paths, the fabric of the specimen remains 
nearly unchanged within a threshold SR range. The differences 
between the measured G and predicted G using empirical equa
tions, including Eqs. (2), (3), and (5), are roughly less than 10 % 
within this threshold SR range. The performance of Eq. (5) is the 
best. However, it should be noted that the principal effective 
stress out-of-plane has a finite effect on the G in a given plane. A 
factor, Rc, was introduced to evaluate the SR effect arising from 

Fig. 13. Evolution of contact force distribution in different stress paths: (a) force chains during RTE-D1/CTC-D1 tests; (b) probability density of F/F during the HC-D 
test; (c) probability density of F/F during the RTE-D1/CTC-D1 tests.
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the redistribution of contact forces, which is fitted by the power 
function of SR.

(c) When SR surpasses its threshold range, G experiences a signifi
cant SR effect and the empirical function is no longer applicable, 
mainly resulting from the substantial adjustment of the specimen 
fabric. The fabric information is crucial for accurately predicting 
G when SR exceeds its threshold range. By incorporating the in
fluence of redistribution of contact forces, “effective” connectiv
ity of fabric, and fabric anisotropy into the empirical equation, 
the stiffness-stress-fabric relationship was established across a 
wide range of SR. This is demonstrated by the linear relationship 
between the function of weighted mechanical coordination, 
(
Zḿ/e

)2/3 and Gij/
(

σ íσ j́

)1/6
/Rc/

(
ΦiΦj

)1/2.

It is to be noted that this study incorporates several simplifications, 
such as the assumption of spherical particles, which differ from real 
granular materials. To what extent such factors as particle morphology, 
physical properties and particle size distribution influence the findings 
presented here warrants further investigation.
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